If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+8x-15=0
a = 6; b = 8; c = -15;
Δ = b2-4ac
Δ = 82-4·6·(-15)
Δ = 424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{424}=\sqrt{4*106}=\sqrt{4}*\sqrt{106}=2\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{106}}{2*6}=\frac{-8-2\sqrt{106}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{106}}{2*6}=\frac{-8+2\sqrt{106}}{12} $
| .3.4=–13.6+(–3.4c)+1.7c | | 4-(5-3n)=6+5n | | 2y=40-3y | | 5z-16-8z=-10-(z+5) | | 13x-31=26+10x | | (2/3)h-9=6-(2/30)h | | 2(x*x*x*x*x)=15-(x*x*x*x*x*x*x*x*x*x) | | 4x-3-(2x+4)=x-(2x-7) | | 4=33/q | | -9x+12=26 | | 9=-9m-9 | | -4(7x+1)=28x-4 | | 5(y-4)-19y=-7(2y+1) | | 60h-1800=45h-1200 | | 12=6(y-3) | | 3x-1/4+x+5/6=-3 | | 60+60y=780 | | 8y-3=15+y | | 34=x-22 | | x=(90-x)+50 | | x(90-x)=50 | | 4(3x+8)=-3(6-2x) | | 3/8=g/(8/5) | | 3+x/4=12 | | x=3(90-x)-68 | | 4g+2(−6+2g)=1−g | | 7-10n=9+8(2-3n) | | 1/2x=-5.5 | | 3x+18-5x=2(9-x) | | 6(x+5)-3=28-3x-1+9x | | (x+5)+(x-5)+90=180 | | (2x-7x)(8x-4)=0 |